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Color models of strong interactions are generalized to a GL(8, C)Y| GL(8, C) c 
gauge theory incorporating space-time curvature and Cartan's torsion. Follow- 
ing Salam, the dynamics is determined by an Einstein-Dirac-type Lagrangian. 
The resulting field equations are a nonlinear (due to the torsion) Heisenberg- 
Pauli-Weyl equation for the fundamental spinor fields and a generalized 
Einstein equation for the background metric of hadronic dimensions. Accord- 
ing to this model baryonic quarks are confined in geon (black soliton)-type 
objects by the tensor gluons of strong gravity. This approach also leads to a 
black soliton mass formula which is in qualitative agreement with part of the 
baryon spectrum. Hadronic mesons are interpreted as gluon strings trapped in a 
multiconnected space-time. Interrelations of color geometrodynamics with 
other "bag" models are pointed out. Finally, the conceptual origin of this 
space-time foundation of quark confinement is presented. 

1. I N T R O D U C T I O N  

The formulation of Dirac's theory of the electron in the frame of general relativity has to its 
credit one feature which should be appreciated even by the atomic physicist who feels safe in 
ignoring the role of gravitation in the building-up of the elementary particles: its explanation 
of the quantum mechanical principle of "gauge invariance" that connects Dirac's 4' with the 
electromagnetic potentials. 

This view put  forth in 1950 by  H e r m a n  Weyl is revived in  color 

geometrodynamics ( C G M D ) :  Mat te r  is represented by f •  c fundamen ta l  
spinor  fields tp (y'r (dist inguished by  f flavor and  c color degrees of 

freedom) which are coupled to a Lagrangian  invar iant ly  const ructed from 
the gauge potentials  of s t rong interactions.  However,  unl ike quantum 

chromodynamics (Ge l l -Mann  et at., 1978), which assumes U ( f ) |  U(c) as 
"gauge group," following Weyl, the tensor forces of strong gravily (Isham 
et al., 1971) should play an  equivalent ly  impor tan t  role for a descript ion of 
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strong interactions. Consequently GL(2f, C)| GL(2c, C) is taken as the 
gauge group of CGMD whereas its dynamics is determined by a gauge- 
invariant generalization of the Einstein-Hilbert action together with a 
Dirac Lagrangian generalized to a curved space-time of hadronic dimen- 
sion (Salam, 1973). The latter is characterized by the modified Planck 
length 

l* --~(8qrhGs/ c3) 1/2 = (8~)l/2h/cM * (1.1) 

or the Planck mass M * ~  1 GeV of strong gravity. 
As is well known from general relativity with spin and torsion (Hehl et 

al., 1976) Cartan's notion of torsion (Cartan, 1922, 1923-25) of the underly- 
ing space-time induces nonlinear spinor terms into the Dirac equation. In 
the generalization considered here the resulting Heisenberg-Pauli-Weyl 
spinor equation (Weyl, 1950) gives rise to a nonlinear coupling also among 
the different fundamental spinor fields, similarly as in Heisenberg's unified 
field theory of elementary particles (Heisenberg, 1966; 1974). Based on this 
geometrodynamical gauge model an unconventional mechanism of quark 
confinement has recently been proposed (Mielke, 1977d). 

In this paper further speculations are offered with the aim of incorpo- 
rating all known interactions between particles into a unifying scheme on a 
semiclassical level. To be more specific, the colored quark hypothesis (see 
Greenberg and Nelson 1977, for a review) will be combined with the 
two-tensor theory of gravitation (Isham et al., 1971, 1973, 1974; see also 
Sivaram and Sinha, 1979, for a recent review). Including charmed quarks 
and regarding the lepton number as the fourth color (Pati and Salam, 
1974) a GL(8, C)f| GL(8, C) c gauge unification of all basic particle forces 
may emerge. As indicated by the title of this paper, this model may be 
regarded as a geometrical extension of the celebrated "'eightfold way" 
scheme of Gell-Mann and Ne'eman (1964). 

In Section 2 the geometrical foundation (Mielke, 1979a) of CGMD 
based on the theory of fiber bundles is presented. Its dynamics is defined 
by a gauge-invariant Einstein-Dirac-type Lagrangian modeled on a curved 
space-time of hadronic dimensions. 

As a result the 42-fold set of fundamental spinor fields is governed by 
the nonlinear spinor equation of the Heisenberg-Pauli-Weyl-type already 
mentioned above, whereas the tensor dominated contribution of strong 
interactions then has to satisfy generalized Einstein field equations. Under 
the assumption that the matter is described by localized solutions of the 
spinor equation, the strong gravity metric tends to the vacuum solutions of 
Einstein's field equations far away from the center of these "solitonlike" 
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objects. Then the asymptotical background is given by a Kerr-Newman- 
type metric in the stationary case. Unlike general relativity this exterior 
geometry can be distinguished, besides by mass, angular momentum, and 
charge, by its color and flavor content, as will be discussed in Section 3. 

In Section 4 tentative particle assignments are made according to the 
CGMD scheme. Since a color symmetry with an exact U(4) c subgroup 
would be too large physically, it is tempting to assume it to be broken in 
such a way that leptons remain (approximately) massless whereas quarks 
pick up real masses similarly as in Goldstone's model theory (see Taylor 
1976 for a review). Therefore the nonlinear interactions between the 
leptons can be almost neglected as in conventional theories. This has to be 
contrasted to the massive case where the nonlinear spinor terms are 
expected to give rise to bound states of quarks. In a related, but simplified, 
model (Deppert and Mielke, 1979) with n scalar "quarks" obeying a 
nonlinear Heisenberg-Klein-Gordon equation, such a binding of the 
scalar fields to localized spherical waves has been found. The latter effect 
may be further enhanced by confining curvature potentials self-consistently 
generated in CGMD by Einstein-type equations. This expectation is 
backed up by the self-attracting feature of these tensor-gluons, a property 
of CGMD which it does not share with Yang-Mills-type gauge theories 
(Coleman and Smarr, 1977). Accordingly, if baryons are extended objects, 
they should be described by black solitons (Salam and Strathdee, 1976) 
which strongly resemble Wheeler's prior construction of geons [= 
gravitational-electromagnetic entities (Wheeler, 1962)]. If these objects 
collide, topological bridges should occur with the flux lines of the color 
and flavor gauge fields locked in. The "mouths" of these wormholes would 
give the impression of a quark-antiquark bound state usually postulated 
for strongly interacting mesons. 

In Section 5, connections of CGMD with phenomenological bag 
models of the MIT and SLAC groups are indicated on the classical level. 

Section 6 touches upon the fundamental issue of to what extent the 
nonexistence of free quarks rests upon the structure of space-time itself. 

2. THE GEOMETRICAL GAUGE MODEL 

The generalization to be tackled--namely, the generalization of the 
SL(6,C) gauge theory of strong interactions (Isham et al., 1973) to one 
with an additional charm and four (hidden) color degrees of freedom-- is 
formally a straightforward task. To be more precise, a principal fiber bundle 
(Kobayashi and Nomizu, 1963) over a pseudo-Riemannian space-time M 4 
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with Lorentzian signature (1, - 1, - 1, - 1 )  and the structure group 

G -- GL(8, C) / | GL(8, C) C D U(4~ | U(4~ | U(4)~: | U(4)~ (2.1) 

will be considered, where f and r denote the flavor and color degrees of 
freedom (respectively). L and R correspond to left and right helicities of 
the fermions. The bundle of linear frames L ( M  4) is locally given by 

L+,=1f l(/)J"a+ i*l.U)j'v%5]x(/)~' [ l(c)m"-~l L~a 7 y }X) (2.2) - - 2  I . ~  t " o p a  J t ) " j  ~ 2 1 ~ t ~ t  t - - " *  ( c ) j  a 5 ( c )  

[The conventions for the Dirac matrices are as in Bjorken and Drell (1964), 
whereas the n z vector operators of U(n) are represented by the generalized 
Gell-Mann matrices ~ normalized to Tr(L~)= 28g.] 

The G bundle L(M 4) (=set  of all 44-bein fields in space-time) 
possesses the gauge-invariant fiber metric 

1 ) c )  - -  1 f,.--= [(f~. @~. )=~Tr(L,L.) (2.3) 

along with the gravitational metric g,, (which corresponds to the gauge 
group SL(2, C) of conventional general relativity). 

The linear connection 

B, -- �88 Aq~)b/o :bx/<f) ~3 �88 A~)/+o :bX~) + Au (2.4) 

can, as usual, be expanded in terms of the 4 4 infinitesimal Hermitian 
generators of the noncompact group G. Because of later importance the 
terms corresponding to the unitary subgroups have been listed separately 
by 

- '  ' (A,  + A, v }x,, (2.5) A _ _ 5 { A / ) / + , A / ) / V s } U ) + I  (c)/ * <O2 5 (~) 

With respect to B~ a gauge-covariant differentiation 

Dt, ~b =-- Ot, ~p + iB~:p (2.6) 

is defined in the local cross section 

~ -  { @Y'c)]f,c = 1 ..... 4) (2.7) 

of the bundle of 42 Dirac spinors associated with L(M4). 
In terms of the connection l-form 

B =  B~dx ~ (2.8) 
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the torsion 2-form 

is defined by 
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- -  1 T -  s L,~ T ~  dx~ /~ dx ~ (2.9) 

T ~ D L = d L + i [ B , L ]  (2.1o) 

i.e., via the first structure equation of E. Cartan. It satisfies the first Bianchi 
identity 

DT= i[ C,L] (2.11) 

The corresponding curvature 2-form ["curvature operator," Misner et al., 
1973 (cited hereafter as MTW), p. 365] 

C= �89 

_ _  1 a l ~  -zLoAGR ..ax"Adx (2.12) 

is given by the second structure equation of /~. Cartan (Kobayashi and 
Nomizu, 1963, p. 78) 

C = d B + i B A B  (2.13) 

and satisfies the second Bianchi identity 

DC=O (2,14) 

In gauge theory (2.13) is more familiar in the local form 

C~,.=3~B.-O.B~ + i[ B~,B.] (2.15) 

Likewise, the field strengths F corresponding to the unitary subgroup of G 
locally read 

F~=O,A~-O~A~ + i[ A,,A~] (2.16) 

For later purposes the tensor *F dual to F is introduced via: 

* - - '  ( 2 . 1 7 )  F~ = ~ [ fl ' /2c,~BF~ 
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In order to link the internal gauge symmetry to the curved space-time the 
"metric" condition 

F~L ~ =--3,L ~ + i[ B~,L ~ ]j + A~n~L n =0  (2.18) 

will be imposed on the covariant derivative V n acting on the bundle 
L(M4). Then, geometric objects can be defined that are invariant not only 
with respect to the group G of local gauge transformations but also with 
respect to the diffeomorphism group | of general coordinate transforma- 
tions (Isham et al., 1973). 

This is the case for the geometrodynamical Lagrangian density 

~OMD~...~. h.__.C fw..[.fD = hc fl,/2; iTr(C,~[ L~,L~])_2A 
2l *2 2l *2 ( 

(2.19) 

which .defines the basic model. It will be referred to as (classical) color 
geometrodynamics (CGMD), since it is known that a complete Rainich 
geometrization of the fermion fields is in principle possible [at least in the 
case G =  GL(2, C)], KuchaL 1965). The modified Planck length (1.1) (or the 
Planck mass M * ~ I  GeV of strong gravity (Isham et al., 1971)) is the 
coupling constant of this model. It can be shown that E~M D in the absence 
of spinor fields reduces to the familiar Einstein Lagrangian density 

hc 
EOMO(~ = 0) = f i e -  2t,2 I f [ l /2 (R( f ) -2A}  (2.20) 

The field equations can be obtained from the geometrodynamical 
Lagrangian by familiar variational principles. As the details of these 
derivations have been presented elsewhere (Mielke, 1979a), it is enough to 
collect here the main results. 

(a) Varying rOMP for the 1-form L of the linear frame bundle yields 
the Einstein- type field equations 

i 1,2(f /L~D~_ D J / L ~ }  (2.21) 

with cosmological term. 
(b) Varying for 6 fGMD/6~ the spinor equation 

i 1 i/m 

will be obtained. 
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(c) By varying E~MD for the contorsional part (Hehl and Datta, 1971) 
of the gauge connection B, the axial vector of the spin-unitary-spin 
current of the fundamental spinor fields is related to Cartan's torsion 
tensor (2.9) as is the case of conventional general relativity with spin and 
torsion (Hehl et al., 1976). 

If this torsional relation is substituted into (2.22) the G-gauge- 
invariant generalization 

{ iL~Vu-31*Z~LSL~LSL~- P-~h )tP=O 

L 5-- Ill-1/2c &aL ALBAL AL8 

of the nonlinear spinor equation 

(2.23) 

/w { iy"a~+ ~ lZ[ Y~Y~ + Y~Ys( ~/YuYs~) ] - --h } (2.24) 

proposed 1958 by Heisenberg and Pauli (Heisenberg, 1966, 1974) is the 
result. In a SL(2,C) gauge theory of gravitation, Weyl derived already 
1950 a similar equation with a self-interaction of the axial-vector type. The 
first term in (2.23) generalizes the Dirac operator to the curved space-time 
(see Schr6dinger, 1932) of strong gravity. The second term due to torsion 
generates a more general self-coupling of the spinors compared to the 
Heisenberg-Pauli equation. The latter was originally devised to be in- 
variant only with respect to the group U(2) of isotopic spin, which 
incorporates only "'isotorsion" (see also Finkelstein, 1961). Since the 
parity-invariant form has been invoked in (2.24), contrary to the original, 
dilatation-invariant formulation (Heisenberg, 1966), a mass term may be 
retained. 

3. COLORED AND FLAVORED K E R R - N E W M A N  HOLES 

In a hierarchical symmetry-breaking scheme it is physically more 
realistic to assume that the GL(8, C)f| GL(8, C) r gauge symmetry of LGM D 
is broken down to U(4~|  U(4~ | U(4)~| U(4)~ by the presence of the 

-invariant Yang-Mills Lagrangian (Yang and Mills, 1954) 
hc ~Y-M=~ 2a [f[1/ZTr(F~FW) (3.1) 

generalized to curved space-time (see, e.g., Charap and Duff, 1977). 

e~ =g2/hc (3.2) 

denotes a dimensionless coupling constant. 
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Disregarding for the moment the fundamental spinor fields ~ the 
complete Lagrangian density 

E = E~M D + Lv_ M (3.3) 

yields, upon variation for 6 E / S f  ~, the Einstein-Maxwell-type equations 
of CGMD:  

1 1"2 Tr(F.OF~o + *F~~ ) (3.4) 

The  field strengths F coupled to an external source S have to satisfy the 
Yang-Mills equations 

V F - - d e + i [ A , F ]  --0, D ' F - -  a*S (3.5) 

which in a curved space-time locally read (MTW, p. 81) 

V"*F.~+i[A",*F.~I=O, V"F.~ + i[A.,F.o I =c~S~ (3.6) 

From (3.6) it can be inferred that the current defined by 

X =aS~ + A.o"F~ ~ + h.o~F"~ - i[ A ", F.~ ] (3.7) 

is locally conserved 

=0  (3.8) 

Provided the charge density I f l l /~  '~ is sufficiently localized, with respect to 
the stationary background (3.11) equations (3.6) admit the matrix-valued 
1-form 

A ( a__~_ '/Zl. Qr cdt_J3 h sin2Odeoi 

as a solution. This is in complete analogy to the Abelian case (MTW, 
p. 898), except that the generalized charge operator 

Q = fspacelike hypersurface [fll / ~/'" d 2;~ (3.10) 

accounts not only for the color (Perry, 1977) but also for the flavor degrees 
of freedom of the strong background metric. Then, an exact solution of 
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(3.4) is of the Kerr-Newman-de Sitter-type (Carter, 1973), which for A =0  
(MTW, p. 877) reads 

A I --~cSin2Od~l z ds2= f~dx"  dx ~ = "~ [c d t -  J3 

1 sin2 0 r2 + d ~ - J  3 (It - d r 2 - p 2 d O  2 
~2 M2c 2 --A 

(3.11) 

Here the abbreviations 

~2_.~r2 {_ J(J+ 1)h COS2 0 (3.12) 
MZc 2 

and 

2MrG s J(J + 1)h 2 ahG~ 
A~r  2 + + ----g-- Tr Q 2 (3.13) 

c ~ MZc 2 c ~ 

have been used, whereas J3, J, and Q denote the quantum numbers of the 
spin projection, the total spin, and the generalized charge, respectively. 
{For the Kerr-Newman solution (3.11) to be valid the classical assignment 
J3=[J(J+ 1)] 1/2 has  to be used.) 

4. PARTICLE INTERPRETATION IN COLOR 
GEOMETRODYNAMICS 

In consideration of the back-coupling of the spinor fields ~p to the 
generalized Einstein equations (2.21) it is extremely difficult to solve the 
Heisenberg-Pauli-Weyl equation (2.23) exactly. Therefore, as a first step 
it is justified to discuss the effect of the nonlinear coupling of the spinors ~p 
via the generalized spin-internal-spin density S ~ in a fixed background 
metric of strong gravity as given in the preceding Section. 

The account of CGMD on a possible unification of all particle forces 
will be analysed by assimilating the scheme A of the Yang-Mills unifica- 
tion of strong, weak and electromagnetic interactions proposed by Pati and 
Salam (1973) although CGMD corresponds rather (see 2.1) to a [ S U(4) | ]4_ 
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unification (Elias et al., 1978) of basic particle forces. In the latter, 
fractional charges can be equally well assigned to the quark fields. In both 
schemes the array (2.7) of the fundamental spinors can be identified with 
hypothetical hadronic constituents and the known teptons as follows: 

024 ~ ~c 
% % % 

Xc 
c a cb Cc 

red yellow blue 

(body) colors 

Ve 1 up e - down l 
_ ~-_ strange flavors 

v~ charm i 
lilac 

(4.1) 

Because of the nonlinear term in (2.23), each of these 16 spinorial "con- 
stituents" will "feel" a self-interaction and furthermore an "external poten- 
tial" produced by all other massive fermions. 

The following discussion will frequently refer to a related scalar 
theory in order to simplify some arguments. In order to do so, it may be 
assumed that the 4 • 4 complex scalar fields 

up= {@f'C)(x)lf, c= 1 ..... 4} (4.2) 

obey the nonlinear Heisenberg-Klein-Gordon equation 

[[]_ 3~p,c 2 2 9 4 4 ~ 2 
- - ~ - t  Icpt + - ~ l  Icpl + ( ~ - )  }r (4.3) 

in curved space-time. Then this theory is founded on a dynamics that is 
similar to those derived for the spinor case, the reason being, that the 
HKG equation (4.3) may be related (but not identically) to the "squared" 
version of (2.23) (see Deppert and Mielke, 1979). Furthermore, (4.3) 
belongs to the few scalar equations known to admit stable (Anderson, 
1971) spherically symmetric solutions in a flat space-time. (In this semi- 
classical approach, the nonrenormalizability of a Iq@ self-interaction may 
be disregarded.) 

4.1. Leptons as Goidstone Spinors? Taking /x2<0 [in (4.3)] it may be 
supposed that the (unphysically) large U(4)-color symmetry is sponta- 
neously broken by the ground state, in such a way that the scalar fields 
qv (f'4) associated with leptons remain massless (at least with respect to 
strong interactions, i.e., their mass being of purely electromagnetic origin), 
whereas the "quark"-type scalar fields pick up real masses of say bt~300 
MeV. Presumably, this will work out similarly as in Goldstone's model 
field theory (see, e.g., Taylor, 1976). If these arguments could be carried 
over to the nonlinear spinor theory given by (2.23), leptons would be the 
related massless spinors of CGMD. (In a supersymmetric model (Capper 
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et al., 1976) only the muonic neutrino vu could perhaps be viewed as a 
"Goldstone spinor"). This idea gets further support from the fact that the 
spin of massless spinors is dual to a lightlike axial vector. Associated with 
the latter is the torsional part of the gauge connection B~, which in the 
massless case may then be removed by an appropriate gauge transforma- 
tion. Therefore, in the treatment of leptons the nonlinear self-interactions 
can be neglected to a certain extent as is usually the case in quantum 
electrodynamics (QED). The fact that the coupling given by the torsion in 
the Dirac-Weyl equation (2.23) is effective only for baryons but not for 
(massless) leptons is already made use of in a model by Finkelstein (1961). 
In his theory, the torsion of the space-time originates from Yukawa-type 
pseudoscalar fields. 

On the other hand, the consideration of Cartan's torsional self- 
coupling at a length scale of the order of the Fermi length 

1 r = ( G r / h C )  1/2 = 6.737 • 10-iv cm (4.4) 

may provide an alternative model of weak interactions (Hehl, 1970; De 
Sabbata and Gasperini, 1978). 

4.2. Baryons as Black Solitons? Opposite effects occur in the case of 
massive spinors. As was suggested in the "new geometrodynamical model 
of baryons" (Mielke, 1977d), the nonlinear terms are then expected to be 
essential for the formation of bound states of three quarks (e.g., 6~, ~L, and 
?, forming a A particle) such that the baryons represented by these states 
are in a color singlet. (The additional charm symmetry is assumed to be 
badly broken.) As a first step consider the Heisenberg-Klein-Gordon 
equation (4.3) corresponding to (2.23), which is given in a stationary 
background. Expanding the stationary solution into spherical harmonics 
Y[(O,e~) reveals that a trivial and also a nontrivial bound state of n 
"soliton-type" solutions occur for "angular momentum" t = 0  and L--- 
( n - 1 ) / 2  (Deppert and Mielke, 1979). If these solutions are sufficiently 
localized the account of the quark fields ~p (or ~) to the f-gravity back- 
ground can be neglected and the complete field equations reduce to the 
Einstein-Maxwell-type system (3.4) far away from the center of the bound 
state. These equations admit (quite uniquely) the Kerr -Newman (-de 
Sitter) solution (3. l 1) in the stationary case. This background produces an 
effective curvature potential (Brill et al., 1972) for scalar waves 9~ which 
reduces in the Schwarzschild-de Sitter case to 

V, Mink. (p,)= (1 (~_)1 1 1.2 )( t(~+ I) 1 2 1"2A)(4.5 ) 
(Eua.) O 3 2~r Ap2 7 ( + ) 0 3 3 2~r 

By introducing the dimensionless radial coordinate 

M*c  
0 = ~ r (4.6) 
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the potential (4.5) is implicitly expressed in terms of Wheeler's (MTW, 
p. 663) "tortoise" coordinate 

1,2 \ - 1 1 ~__~Ap3 ) (4.7) p*~fdpo  O (4-) 1 - -~ 

De Sitter "microuniverses" could provide particularly useful models of the 
hadronic background space-time [see Mielke (1977c) for a review of field 
theory in de Sitter space]: In the anti-de Sitter case (M=0,  A = - 3 / R  2) 
exhibiting an 0(2, 3) symmetry, V~ *) generates a completely confining 
"bag" for hadrons of the harmonic oscillator type (Salam and Strathdee, 
1978; Caldirola et al., 1978), whereas the finite barrier of the Schwarzschild 
case (A=0) may be operative for a more realistic partial confinement 
(Figure 1). 

A concept of describing extended particles by means of strong internal 
curvature has already been suggested by Lanczos (1957). If this internal 
space is assumed to be an Einstein space R~=Af~, it can be shown 

- -  ' 1 ' 1 l ~ 
Ve~'ff (~* )  EFFECTIVE 

0 .15  POTENTIAL I 

! 
3 ~ i~ / 

/ '  

/ 5 
~ \ Unstable 

-0.05 ~3 
-- Minkowskian } Schwarzschitdl back 
. . . . . .  Euc(ideen 
--'-- Anti-de Sitter I ground 

2.5 

I ! , 
Q Schwarzschdd -5  0 5 10 * 

05 1 ~* 
De Sider  

Fig. 1. Confining potentials in strong gravity. 
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(Komar, 1964; Vigier, 1966) that the phenomenological particle symmetries 
like SU(3) or SU(2, 1) emerge rather naturally. A geometrical derivation of 
these internal symmetry groups, however, is fundamentally related to the 
difficult problem of embedding the internal manifold in the external 
space-time (Ne'eman, 1965; Salam and Strathdee, 1978). 

The nontrivial Ansatz (Deppert and Mielke, 1979) admitted by the 
HKG equation (4.3) in a Schwarzschild background indicates that even for 
color excited I c --t = 1 "quarks" the resulting bound state appears essen- 
tially as black far away from its center (provided that the quarks carry the 
body colors red, yellow, and blue). According to the general view adopted 
in CGMD, baryons are represented by black solitons [or geons (Wheeler, 
1962)]. This terminology refers also to the black-hole-type background of 
the confining tensor gluon field which together with the torsional nonlinear- 
ity in the wave equation is the reason that the color of the "solitonic" 
bound states may become transcendent (Wheeler, 1971a; Bekenstein, 1972; 
Pati et al., 1975) (or black) far away from its center. This renders the ad 
hoc assumption of conventional color models (Greenberg and Nelson, 
1977) that physical particles occur only in color singlets unnecessary. 
Briefly stated, there is "color without color" in CGMD! 

4.3. Black Soliton Mass Formula. In general relativity, the total mass 
M of a black hole as measured at spatial infinity is given by the formula 
derived by Christodoulou and Ruffini (1971) for the Kerr-Newman solu- 
tion. With regard to the background (3.11) it reads 

M2 ( ahc )2 j ( J  + l)h2c 2 
= I + - - T r Q  2 + (4.8) 

Mi2r 4 Mir2Gs 4 Mir4Gs 2 

In accordance with Wheeler's (1974) conjecture which states that "a black 
hole has no hair" the only adjustable classical parameters are its total 
charge, its total angular momentum, and its irreducible mass. The latter is a 
nondecreasing parameter which is determined by the surface area Sar of 
the hole via 

" S .1 /2  2 

Mir ~ (1-~-~) -~  (4.9) 

Therefore, it can be viewed as of purely geometrical origin. In GMD it is 
natural to identify Mir with the Planck mass M* of strong gravity as given 
by equation (1.1). Since the preceding discussion supports the expectation 
that only the flavor but not the color degrees of freedom of the bound state 
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are excited in CGMD, the generalized Gell-Mann-Nisho'ima relation 

Q = 13 + ~y_3cI z (4. l 0) 

can be assumed in a model with integer charged constituents (Pati and 
Salam, 1973). For the octet representation within the 20-dimensional 
representation (2, 1,0,0) of U(4) the relation (4.10) leads to 

TrQ2 = 4fl Y + I ( I + I ) -  1 y 2  (4.11) - - E  

whereas other more complicated cases have been explicitly dealt with by 
Okubo (1975). 

M(MeV) 

2500 

200(3 

150(3 

I000 

*Q ] 

�9 - �9 ; - - ( Z )  

B lack  so[Jton 
[ k r n '~ss  f o r m u [ o  

o A  

�9 N ,a  j t--{A} 

- -  + l p a r i t y  b q r y o n s  t~__(E) 
. . . .  j 

- - - N  

(E)- s - 

'L-C3 ) A - -  
T - -  

__.(-_-) A_~--A 

--T - E  
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Fig. 2. Black soliton mass formula [M* fitted for A(1115.6)]. 
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Then the Gell-Mann-Okubo type mass formula 

= 1 - f l Y +  o~ I ( I + 1 ) -  1 M .2 4- 4 y2 

for extended baryons is the result (Mielke, 1977d). Salam (1973) as well as 
Sivaram and Sinha (1977) made a related suggestion which, however, did 
not culminate in a specific formula. It generalizes Wheeler's "no hair" 
conjecture to the GL(8,C) case with the effect that now the quantum 
numbers of isospin I, hypercharge Y, charm C, and total angular momen- 
tum J are the solely disposable characteristics of a black soliton (See also 
Bekenstein, 1975). In order to obtain a nonzero /3 the flavor part of 
G-gauge symmetry needs to be broken down further similarly as in the 
"eightfold way" scheme (Gell-Mann and Ne'eman, 1964). Using the phe- 
nomenological value/3= 1/5, the "black soliton'" mass formula (4.12) fits 
reasonably well (Figure 2) with part of the baryon spectrum as will be 
discussed in more detail elsewhere (Mielke, 1979b). 

4.4 Mesons without Quarks7 In conventional models (Kokkedee, 
1969), hadronic mesons are interpreted as quark-antiquark pairs qc-/which 
are bound together by the vector gluons A~ (c) of the color gauge groups 
U(4)~ | U(4),~. In "quantum chromodynamics" the color electric field is 
expected to depend as 

Eb (c) ~=Fb(D) ~ e -Izl ~,c/h (4.13) 

on the distance z from the symmetry axis (see, e.g., 't Hooft, 1977). Since 
the force between two quarks would then be independent of their spatial 
separation, a color confinement mechanism for nonsinglet states would 
have been achieved which qualitatively would resemble strings. 

Contrary to this, in CGMD a purely geometrical picture of mesons 
may emerge as follows. 

(a) Pseudoscalar and vector mesons consist only of gluon field (and 
flavored flux) lines, which, however, are trapped in the wormhole topology 
R • S~•  S z of the underlying space-time of hadronic dimensions. Then, 
similarly as in Wheeler's wormhole model (Wheeler, 1962, 1978), the 
mouths of a handle apparently are the origins of a quark-antiquark pair 
which seemingly are connected by a gluon string (Figure 3). This view is 
consistent with the claim that a scattering process (Mielke, 1977a) of black 
solitons representing baryons should produce such color-confining topo- 
logical Einstein-Rosen bridges (Einstein and Rosen, 1935) in space-time. 
As these may carry away angular momentum corresponding to J = 0, 1, it 
would be desirable to achieve a generalization to colored Kerr-Newman 
wormholes. However, such a global extension of (3.11) is intricate and can 
lead to causality violations (Carter, 1968). In a related view (Drell, 1978) it 
has been suspected that hadronic mesons are rather like magnetic dipoles. 
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Fig. 3. Hadronic meson regarded as a colored Ke r r -Newman  wormhole. 

(b) Tensor Mesons. As the two-tensor theory of Isham et al. (1971, 
1974) was originally devised to explain the observed massive nonet of the 
strongly interacting spin-2 + mesons f, f ' ,  A 2 and K*(1430), its extension to 
color is straightforward. Thereby one only adds the colored tensor gluons 
necessary for the quark confinement in baryons, as already discussed. 
However, it is important to point out that the physical f-mesons may be 
more appropriately represented by nonlinear f-gravitons (in the sense of 
Penrose, 1976), in particular with regard to the issue of quantizing gravity 
(Isham et al., 1975). This has to be contrasted with pertubative approaches 
in a linearized theory. 

Finally the saturation problem of the conventional quark model 
(Kokkedee, 1969) may have a surprising solution in CGMD: Mesonic 
hadrons are not interpreted as quasistable q~/bound states but are rather 
explained by color- and flavor-carrying gauge fields trapped in the multi- 
connectedness of space-time. Only baryons consist of "real" quark-type 
fundamental spinor fields, which, however, are confined by the curvature 
potentials of strong gravity. If the gauge subgroup U(3) c is, as it is usually 
assumed, an exact symmetry, due to the torsional self-coupling in the 
generalized Heisenberg-Pauli-Weyl spinor equation exactly three quarks 
should form a bound state. 

5. REGAINING O T H E R  BAG M O D E L S  F R O M  C G M D  

For future developments it is instructive to point out some interrela- 
tions of the geometrodynamical confinement scheme with corresponding 
mechanisms proposed in phenomenological bag models (see Hasenfratz and 
Kuti, 1978, for a review): In the nonlocal theory of the MIT group 
(Chodos et al., 1974) the term - ] f l l /2B is added to the Lagrangian of the 
matter fields, where B is a positive potential energy per unit volume. In 
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order to compress the "bag" against the outward pressure of an effectively 
massless quark gas, B is nonzero only for that region of space that contains 
hadron fields. This assumption is also necessary in order to confine the 
gluon vector fields A, (c~. 

In C GMD the volume tension B corresponds to a nonzero cosmologi- 
cal constant 

'l 8(c) (5.1) A(c)= 

of the hadronic "minicosmos." According to Salam and Strathdee (1978) a 
SU(2)c| SL(2, C) c gauge theory may yield a color-sensitive A(e) such that 
in an anti-de Sitter-type confining background color singlets are produced 
which in their turn do not generate a nonzero A(c--0).  

Therefore, the inclusion of the so-called cosmological term in C G M D  
may not at all be the "biggest blunder of my (Einstein's) life" (citation 
from MTW, p. 410), at least not with respect to particle physics. 

As shown by Creutz and Soh (1975), the MIT bag model can be 
obtained from a local field theory in a strong-coupling limit. Their analysis 
also exemplifies a connection with the SLAC bag model (Bardeen et al., 
1975) in which the quark field ~p interacts with a neutral scalar field o the 
dynamics of which is determined by the Lagrangian density 

% = 5(~ttO)(O o) -- Ho4+2Hf2o  2 (5.2) 

In both models the quartic self-interaction is an essential ingredient in 
order to produce the bag. It is therefore important to note that such a 
confining scalar potential already is inherent in CG MD  as a special case. 
To see this, apply the conformal change 

f~'~---~f~'~ = o - 4/(, - 2)f~ (5.3) 

of the strong gravity metric to the Einstein Lagrangian density (2.20) to 
which E ~ D  reduces in the case of vanishing spinor fields. In a space-time 
having n dimensions this procedure yields 

s  2n/("-2)} (5.4) 

Since with respect to (5.3) the scalar curvature R transforms as (Mielke, 
1977b, Appendix, equation A.6) 

0("+2)/("-2)K = Re  4 ( n -  1) n - 2  file (5.5) 
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up to a total divergence 

~GMD=idetf~l--1/2 { 4~--~----~) f~(~a)(O~o)--2Aa2n/(n-2) + Ra2 } (5.6) 

is the result. This is proportional to (5.2) if the hadronic metric of the 
four-dimensional space-time is conformally fiat and the values of the 
cosmological constant and of the scalar curvature are related by 

A = 6 H ,  R=24Hf 2 (5.7) 

respectively. 

6. QUARK CONFINEMENT FOUNDED ON T H E  
STRUCTURE OF SPACE-TIME? 

If the confinement mechanism provided by CG MD  is really funda- 
mental it should crucially depend on the signature and on the dimension n 
of the space-time manifold. 

Since the Riemann curvature tensor is completely determined by the 
Ricci tensor if n < 3, Einstein's vacuum equations (2.24) with A (c )=0  
outside the hadron admit non flat confining solutions only if n >/4, a result 
which is independent of the signature of the manifold. 

Consider now for n - -4  a Schwarzschild-type hadronic background 
defined in a locally Euclidean "space-time." Since the corresponding 
Newtonian potential is related to the metric coefficients by (MTW, p. 449) 

1 M*G~ (6.1) 
(I)N = "2 ( g00  - -  7]00) r 

the line element 

_ _  - -  drZ + r2(dO2 +sin2Od#~ 2) 

(6.2t 

has to be considered as the "Euclideanization" of (3.11) for "/3--J- '-Q = 0. 
As expected intuitively in this case there does not exist anything that 
would resemble a horizon (at r=2MGs/C2). This is reflected in the fact 
that the corresponding effective potential (4.5) will not exhibit any barrier 
(see Figure 1) that could prevent an accumulation of quarks having 
positive energy from disintegrating into its constituents. 
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This has to be opposed to the case of a curved manifold which is 
asymmetrically broken up into one with three spacelike and one timelike 

e dimensions. Then the curvature barrier of V~i~(O ) becomes operative for 
a (partial) confinement of classical nonlinear waves. As discussed in 
Section 4.2 a complete quark confinement can be achieved by the tensor 
forces in anti-de Sitter "microuniverses" (Figure 1). If this view is respected 
by nature, baryons would resemble mirror images of the whole universe, as 
is anticipated in Leibniz' theory of monads (Leibniz, 1714; see also Wheeler, 
1971b). In conclusion the following deep truth (but not according to Niels 
Bohr's terminology) may be suspected as the outcome of a new geo- 
metrodynamical model of particles: 

The reason for the nonexistence of free quarks is that we live in a 
four-dimensional, locally Minkowskian space-time. 

If nature had chosen a space-time with different characteristics, the 
proton, e.g., in this conceptual framework would be too unstable for 
physicists to come into being (compare Salam, 1977). 

This concluding remark is very much in the spirit of a "Darwinistic" 
explanation of the fundamental physical constants discussed by MTW 
(p. 1216). 
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